Revisiting the Low-Frequency Dipolar Perturbation by an Impenetrable Ellipsoid in a Conductive Surrounding

Author:

Vafeas Panayiotis1ORCID

Affiliation:

1. Department of Chemical Engineering, University of Patras, 26504 Patras, Greece

Abstract

This contribution deals with the scattering by a metallic ellipsoidal target, embedded in a homogeneous conductive medium, which is stimulated when a 3D time-harmonic magnetic dipole is operating at the low-frequency realm. The incident, the scattered, and the total three-dimensional electromagnetic fields, which satisfy Maxwell’s equations, yield low-frequency expansions in terms of positive integral powers of the complex-valued wave number of the exterior medium. We preserve the static Rayleigh approximation and the first three dynamic terms, while the additional terms of minor contribution are neglected. The Maxwell-type problem is transformed into intertwined potential-type boundary value problems with impenetrable boundary conditions, whereas the environment of a genuine ellipsoidal coordinate system provides the necessary setting for tackling such problems in anisotropic space. The fields are represented via nonaxisymmetric infinite series expansions in terms of harmonic eigenfunctions, affiliated with the ellipsoidal system, obtaining analytical closed-form solutions in a compact fashion. Until nowadays, such problems were attacked by using the very few ellipsoidal harmonics exhibiting an analytical form. In the present article, we address this issue by incorporating the full series expansion of the potentials and utilizing the entire subspace of ellipsoidal harmonic eigenfunctions.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An inverse electromagnetic scattering problem for a layered ellipsoid;Journal of Computational and Applied Mathematics;2020-08

2. Low‐frequency dipolar electromagnetic scattering by a solid ellipsoid in lossless environment;Studies in Applied Mathematics;2020-06-10

3. Mathematical Simulation of Electromagnetic Scattering Field from Perfectly Conducting Object with Dielectric Cover on the Base of Physical Theory of Diffraction;Proceedings of the 2nd International Conference on Computer Science and Application Engineering - CSAE '18;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3