Affiliation:
1. Division of Advanced Technology and Development, BML Inc., Saitama, Japan
Abstract
Extracellular vesicles (EVs) are known to contain unique proteins that reflect the cells of origins. Activated T cells are reported to secrete various EVs. To establish T cell subset-specific biomarkers, we performed proteomic analysis with Th1- and Th2-derived EVs and identified HLA-DR as a Th1-dominated EV membrane protein. We designed a measurement system for CD3+CD4+, CD3+CD8+, and CD3+HLA-DR+EVs to specifically determine EV subpopulations derived from CD4+, CD8+, and Th1-type T cells, respectively.In vitroanalysis showed that CD3+CD4+EVs and CD3+CD8+EVs were selectively secreted from activated CD4+and CD8+T cells, respectively, and that CD3+HLA-DR+EVs were actively secreted from not only Th1 but also activated CD8+T (probably mostly Tc1) cells. To evaluate the clinical usefulness of these EVs, we measured the serum levels in patients with inflammatory diseases, including Epstein-Barr virus (EBV,n=13) infection, atopic dermatitis (AD,n=10), rheumatoid arthritis (RA,n=20), and osteoarthritis (OA,n=20) and compared the levels with those of healthy adults (n=20). CD3+CD4+EVs were significantly higher in all of EBV infection, AD, RA, and OA while CD3+CD8+EVs were higher in EBV infection, lower in RA, and not different in AD and OA relative to the control. The levels of CD3+HLA-DR+EVs were markedly higher in EBV infection and significantly lower in AD. The results suggest that these EV subpopulations reflectin vivoactivation status of total CD4+, total CD8+, and Th1/Tc1-type T cells, respectively, and may be helpful in T cell-related clinical settings, such as cancer immunotherapy and treatment of chronic infection, autoimmune diseases, and graft-versus-host disease.
Subject
Immunology,General Medicine,Immunology and Allergy