Molecular Interactions of Renin with Chikusetsusaponin IV and Momordin IIc

Author:

Zhang Hai-Ling1,Zhu Gui-Lan1,Chen Xiao-Tian2ORCID

Affiliation:

1. School of Life Sciences, Hefei Normal University, Hefei 230601, China

2. Teaching Affairs Department, Anhui Jianzhu University, Hefei 230601, China

Abstract

The paper dealt with the molecular mechanism for the binding sites and driving forces of renin with chikusetsusaponin IV and momordin IIc by means of molecular docking and free energy calculation based on the crystal structure. The result showed that renin and the saponins fit well. As shown by LigPlot + software analyzing the hydrogen bonding and hydrophobic effect between renin and the saponins, the amino acid residues such as Ser230, Tyr85, and Tyr201 form the hydrogen bonds, with S3sp, S3, and S2′ being the active pockets. In addition, there are relatively strong hydrophobic interactions of renin with saponins in S3sp, S3, S2, S1, S1′, and S2′, with Gly228, Val36, Ala229, Gln19, Met303, Gln135, Ser41, Ile137, Asp38, Arg82, and Tyr83 being the key amino acids. The dynamics reached equilibration after about 1000 ps simulation with average root-mean-square deviations of 0.222 nm and 0.217 nm. The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) yielded −1.10812 kcal/mol and −39.0587 kcal/mol total binding energy for the two complexes, respectively, which were primarily contributed by electrostatic and van der Waals interaction energies, and the binding was strongly unfavored by polar solvation energy, a further confirmation that momordin IIc has stronger hydrogen bonding and hydrophobic effect in the inhibition of renin than the chikusetsusaponin IV.

Funder

National Natural Science Foundation of China Youth Science Fund Project

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3