Analyzing Network Protocols of Application Layer Using Hidden Semi-Markov Model

Author:

Cai Jun1,Luo Jian-Zhen1,Lei Fangyuan1

Affiliation:

1. School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China

Abstract

With the rapid development of Internet, especially the mobile Internet, the new applications or network attacks emerge in a high rate in recent years. More and more traffic becomes unknown due to the lack of protocol specifications about the newly emerging applications. Automatic protocol reverse engineering is a promising solution for understanding this unknown traffic and recovering its protocol specification. One challenge of protocol reverse engineering is to determine the length of protocol keywords and message fields. Existing algorithms are designed to select the longest substrings as protocol keywords, which is an empirical way to decide the length of protocol keywords. In this paper, we propose a novel approach to determine the optimal length of protocol keywords and recover message formats of Internet protocols by maximizing the likelihood probability of message segmentation and keyword selection. A hidden semi-Markov model is presented to model the protocol message format. An affinity propagation mechanism based clustering technique is introduced to determine the message type. The proposed method is applied to identify network traffic and compare the results with existing algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3