Affiliation:
1. Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
2. Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11185 Belgrade, Serbia
Abstract
Hydrogen adsorption on twenty different palladium and platinum overlayer surfaces with (111) crystallographic orientation was studied by means of periodic DFT calculations on the GGA-PBE level. Palladium and platinum overlayers here denote either the Pd and Pt mono- and bilayers deposited over (111) crystallographic plane of Pd, Pt, Cu, and Au monocrystals or the (111) crystallographic plane of Pd and Pt monocrystals with inserted one-atom-thick surface underlayer of Pd, Pt, Cu, and Au. The attention was focused on the bond lengths, hydrogen adsorption energetics, mobility of adsorbed hydrogen, and surface reactivity toward hydrogen electrode reactions. Both the ligand and strain effects were considered, found to lead to a significant modification of the electronic structure of Pd and Pt overlayers, described through the position of the d-band center, and tuning of the hydrogen adsorption energy in the range that covers approximately 120 kJmol−1. Mobility of hydrogen adsorbed on studied overlayers was found to be determined by hydrogen-metal binding energy. Obtained results regarding Pd layers on Pt(111) and Au(111) surfaces, in conjunction with some of the recent experimental data, were used to explain its electrocatalytic activity towards hydrogen evolution reaction.
Subject
Physical and Theoretical Chemistry
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献