Data-Driven Hybrid Internal Temperature Estimation Approach for Battery Thermal Management

Author:

Liu Kailong1ORCID,Li Kang2,Peng Qiao3,Guo Yuanjun4ORCID,Zhang Li5

Affiliation:

1. School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast BT9 5AH, UK

2. School of Electronic and Electric Engineering, University of Leeds, Leeds, LS2 9JT, UK

3. Queen's Management School, Queen's University Belfast, Belfast, BT9 5EE, UK

4. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 5108055, China

5. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China

Abstract

Temperature is a crucial state to guarantee the reliability and safety of a battery during operation. The ability to estimate battery temperature, especially the internal temperature, is of paramount importance to the battery management system for monitoring and thermal control purposes. In this paper, a data-driven approach combining the RBF neural network (NN) and the extended Kalman filter (EKF) is proposed to estimate the internal temperature for lithium-ion battery thermal management. To be specific, the suitable input terms and the number of hidden nodes for the RBF NN are first optimized by a two-stage stepwise identification algorithm (TSIA). Then, the teaching-learning-based optimization (TLBO) algorithm is developed to optimize the centres and widths in every neuron of basis function. After optimizing the RBF NN model, a battery lumped thermal model is adopted as the state function with the EKF to filter out the outliers of the RBF model and reduce the estimation error. This data-driven approach is validated under four different conditions in comparison with the linear NN models. The experimental results demonstrate that the proposed RBF data-driven approach outperforms the other approaches and can be extended to other types of batteries for thermal monitoring and management.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3