Long Noncoding RNA IGFBP7-AS1 Promotes Odontogenesis of Stem Cells from Human Exfoliated Deciduous Teeth via the p38 MAPK Pathway

Author:

Wang Dan1ORCID,Zhu Ningxin1,Xie Fei1,Qin Man1,Wang Yuanyuan2ORCID

Affiliation:

1. Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China

2. School and Hospital of Stomatology, Peking University, Beijing, China

Abstract

Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. Epigenetics refers to heritable changes in gene expression patterns that do not alter DNA sequences. Long noncoding RNAs (lncRNAs) are one of the main methods of epigenetic regulation and participate in cell differentiation; however, little is known regarding the role of lncRNAs during SHED odontogenic differentiation. In this study, RNA sequencing (RNA-seq) was used to obtain the expression profile of lncRNAs and mRNAs during the odontogenic differentiation of SHED. The effect of IGFBP7-AS1 on odontogenic differentiation of SHED was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, quantitative reverse transcription PCR (qRT-PCR), Western blot, and in vivo. The level of p38 and p-p38 protein expression was examined by Western blot, and the result was verified by adding the p38 inhibitor, SB203580. The expression profiles of lncRNAs and mRNAs were identified by RNA-seq analysis, which help us to further understand the mechanism in odontogenesis epigenetically. IGFBP7-AS1 expression was increased during odontogenic differentiation on days 7 and 14. The ALP staining, ARS staining, and expression of odontogenic markers were upregulated by overexpressing IGFBP7-AS1 in vitro, whereas the expression of osteogenesis markers was not significantly changed on mRNA level. The effect of IGFBP7-AS1 was also verified in vivo. IGFBP7-AS1 could further positively regulate odontogenic differentiation through the p38 MAPK pathway. This may provide novel targets for dental tissue engineering.

Funder

State Key Laboratory of Oral Diseases (SKLOD) Open Fund

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3