Influence of Sports Biomechanics on Martial Arts Sports and Comprehensive Neuromuscular Control under the Background of Artificial Intelligence

Author:

Zhang Jinqian1,Qu Qingling1,An Meiling2,Li Ming1,Li Kai1,Kim Sukwon1ORCID

Affiliation:

1. Department of Physical Education, Jeonbuk National University, Jeonju 54896, Jeollabuk, Republic of Korea

2. School of Marxism, Guangdong Food and Drug Vocational College, Guangzhou 510520, Guangdong, China

Abstract

Neuromuscular control refers to the reflexes of nerves that affect muscle balance and function. In addition, there are interactions between joint structure, muscle function, and the central nervous system. In the integration with other intelligent control methods and optimization algorithms, such as fuzzy control/expert verification and genetic algorithm, it provides nonparametric object models, optimization parameters, reasoning models, and fault diagnosis. The central nervous system is the main research object of neuromuscular control. Martial arts often cause injuries or affect the progress of martial arts because of some irregular movements. Chinese traditional martial arts is another name for “martial arts” in the late Qing Dynasty in China. It is mainly reflected in the individual’s application and attainments in martial arts traditional teaching methods and personal cultivation. Therefore, this paper proposes an analysis of the influence of sports biomechanics on martial arts sports and comprehensive neuromuscular control in the context of artificial intelligence. In this paper, the specific research of Wushu sports is carried out mainly in two aspects: sports biomechanics and neuromuscular control. It uses a variety of algorithms, successively using particle swarm algorithm, neural network structure, fitness function, and so on. This paper compares and analyzes their accuracy and then selects the optimal algorithm. It then conducts experimental research on the martial arts movements of professional martial arts Sanda players. The final experimental conclusion shows that, regarding lower limb selective response time and the middle left lower limb prereaction time (L-PMT) of the elite athlete group and the ordinary athlete group, the average movement value of the elite group of 2.336 is significantly greater than that of the ordinary group of 1.938. This shows that, within a certain range, the larger the knee angle and the smaller the hip angle, the stronger the ability to buffer the impact of the ground, without causing greater damage to the muscles and joints.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3