Phase Demodulation of Rotor Torsional Vibration Measurement under Time-Varying Speed

Author:

Chen Moli1ORCID,Zheng Nan1ORCID,Zheng Jun2,Jin Zhu1,Luo Guihuo1ORCID

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China

2. Wuhu Diamond Aeroengine Co., Ltd., Wuhu, Anhui, China

Abstract

When torsional vibration is measured with the zebra-tape method, the modulation signals can be contaminated by electrical noise, environmental noise, step noise, sensor nonlinearities, and so on. Although the amplitudes of these types of noise are very weak relative to the amplitude of the ideal pulse test signal, they may introduce large-scale random broad-spectrum noise to the signal phases. Such noise is difficult to remove using frequency domain, time-frequency-domain, or threshold sampling methods and seriously affects the accuracy of torsional vibration measurements. This paper presents a phase demodulation algorithm based on downsampling and local resampling (DSLR) to improve the accuracy of torsional vibration measurements. To verify the proposed DSLR algorithm, torsional vibration simulations and experiments are conducted under a time-varying rotation speed. The results show that the angular displacement signal obtained from the torsional vibration test using zebra tapes is the superposition of the dynamic and static angular displacements, with the latter generated because of the varying rotation speed with respect to time. The DSLR algorithm effectively reduces the phase noise and demodulates the pulse signal phases. The work in this paper provides a method for obtaining reference torsional vibration measurements of rotors based on the zebra-tape method under time-varying speeds.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retrieval-based Knowledge Augmented Vision Language Pre-training;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3