Affiliation:
1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
2. Wuhu Diamond Aeroengine Co., Ltd., Wuhu, Anhui, China
Abstract
When torsional vibration is measured with the zebra-tape method, the modulation signals can be contaminated by electrical noise, environmental noise, step noise, sensor nonlinearities, and so on. Although the amplitudes of these types of noise are very weak relative to the amplitude of the ideal pulse test signal, they may introduce large-scale random broad-spectrum noise to the signal phases. Such noise is difficult to remove using frequency domain, time-frequency-domain, or threshold sampling methods and seriously affects the accuracy of torsional vibration measurements. This paper presents a phase demodulation algorithm based on downsampling and local resampling (DSLR) to improve the accuracy of torsional vibration measurements. To verify the proposed DSLR algorithm, torsional vibration simulations and experiments are conducted under a time-varying rotation speed. The results show that the angular displacement signal obtained from the torsional vibration test using zebra tapes is the superposition of the dynamic and static angular displacements, with the latter generated because of the varying rotation speed with respect to time. The DSLR algorithm effectively reduces the phase noise and demodulates the pulse signal phases. The work in this paper provides a method for obtaining reference torsional vibration measurements of rotors based on the zebra-tape method under time-varying speeds.
Funder
National Science and Technology Major Project
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Retrieval-based Knowledge Augmented Vision Language Pre-training;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26