Artificial Intelligence in Interventional Radiology: A Literature Review and Future Perspectives

Author:

Iezzi Roberto12ORCID,Goldberg S. N.3,Merlino B.12,Posa A.4,Valentini V.56,Manfredi R.12

Affiliation:

1. Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radiologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy

2. Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy

3. Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel

4. Department of Radiology, AFaR-IRCCS Fatebenefratelli Hospital Foundation for Health Research and Education, via di Ponte Quattro Capi 39, 00186 Roma, Italy

5. Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy

6. Università Cattolica del Sacro Cuore, Istituto di Radioterapia Oncologica, Roma, Italy

Abstract

The term “artificial intelligence” (AI) includes computational algorithms that can perform tasks considered typical of human intelligence, with partial to complete autonomy, to produce new beneficial outputs from specific inputs. The development of AI is largely based on the introduction of artificial neural networks (ANN) that allowed the introduction of the concepts of “computational learning models,” machine learning (ML) and deep learning (DL). AI applications appear promising for radiology scenarios potentially improving lesion detection, segmentation, and interpretation with a recent application also for interventional radiology (IR) practice, including the ability of AI to offer prognostic information to both patients and physicians about interventional oncology procedures. This article integrates evidence-reported literature and experience-based perceptions to assist not only residents and fellows who are training in interventional radiology but also practicing colleagues who are approaching to locoregional mini-invasive treatments.

Publisher

Hindawi Limited

Subject

Oncology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Radiology;Robotics in Physical Medicine and Rehabilitation;2025

2. Artificial Intelligence in Point-of-care Ultrasound;Current Emergency and Hospital Medicine Reports;2024-05-22

3. Interventional Oncology: 2024 Update;Canadian Association of Radiologists Journal;2024-03-05

4. The role of artificial intelligence in radiology and interventional oncology;Artificial Intelligence for Medicine;2024

5. Current applications of algorithmic artificial intelligence in interventional radiology: A review of the literature;Journal of Medical Imaging and Radiation Oncology;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3