Finite-Time Boundedness and H∞ Control for Affine Switched Systems

Author:

Han Lu1ORCID,Qiu Cunyong1,Jiang Lin1

Affiliation:

1. School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, Sichuan, China

Abstract

For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB and H performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms and multiple equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under a prespecified state boundary are given. Then the results are extended to solve H finite-time boundedness problem, in which the H controllers are designed to guarantee the finite-time boundedness of affine switched system with H performance. In our investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several numerical examples are given to illustrate the effectiveness of the proposed results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ride performance of driver’s seat suspension system using various dynamics models;Noise & Vibration Worldwide;2022-09-20

2. Performance analysis of the seat suspension using different models of the optimal negative-stiffness-structures;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-04-20

3. Design and analysis of a vibration isolation system with cam–roller–spring–rod mechanism;Journal of Vibration and Control;2021-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3