Growth of Soot Volume Fraction and Aggregate Size in 1D Premixed C2H4/Air Flames Studied by Laser-Induced Incandescence and Angle-Dependent Light Scattering

Author:

Langenkamp P. N.1,van Oijen J. A.2,Levinsky H. B.13,Mokhov A. V.1ORCID

Affiliation:

1. University of Groningen, Faculty of Science and Engineering, Energy and Sustainability Research Institute Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands

2. Eindhoven University of Technology, Department of Mechanical Engineering, De Wielen, 5612 AZ Eindhoven, Netherlands

3. DNV GL, Oil & Gas, Energieweg 17, 9743 AN Groningen, Netherlands

Abstract

The growth of soot volume fraction and aggregate size was studied in burner-stabilized premixed C2H4/air flames with equivalence ratios between 2.0 and 2.35 as function of height above the burner using laser-induced incandescence (LII) to measure soot volume fractions and angle-dependent light scattering (ADLS) to measure corresponding aggregate sizes. Flame temperatures were varied at fixed equivalence ratio by changing the exit velocity of the unburned gas mixture. Temperatures were measured using spontaneous Raman scattering in flames with equivalence ratios up to ϕ = 2.1, with results showing good correspondence (within 50 K) with temperatures calculated using the San Diego mechanism. Both the soot volume fraction and radius of gyration strongly increase in richer flames. Furthermore, both show a nonmonotonic dependence on flame temperature, with a maximum occurring at ~1675 K for the volume fraction and ~1700 K for the radius of gyration. The measurement results were compared with calculations using two different semiempirical two-equation models of soot formation. Numerical calculations using both mechanisms substantially overpredict the measured soot volume fractions, although the models do better in richer flames. The model accounting for particle coagulation overpredicts the measured radii of gyration substantially for all equivalence ratios, although the calculated values improve at ϕ = 2.35.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3