The MUC5B Mucin Is Involved in Paraquat-Induced Lung Inflammation

Author:

Sun Hao1ORCID,Jiang Yunfei12,Song Yang1,Zhang Xiaomin1,Wang Jun3,Zhang Jinsong1ORCID,Kang Jian1ORCID

Affiliation:

1. Department of Emergency, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China

2. Department of Emergency, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China

3. Key Lab of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China

Abstract

Objective. Paraquat (PQ), a widely used toxic herbicide, induces lung inflammation through mechanisms that remain incompletely understood. In a previous study, we found that the plasma MUC5B mucin level was implicated in PQ poisoning in patients. Here, we hypothesize that MUC5B is a critical mediator in PQ-induced cell inflammation. Methods. A mouse model of PQ-induced lung injury was used to examine the MUC5B expression level. A549 cells (alveolar epithelial cells line) were exposed to PQ in dose-dependent and time-dependent manners. Cell viability was detected by CCK-8 assays. The expression levels of MUC5B were examined by dot blot enzyme-linked immunosorbent assay (ELISA) and RT-qPCR. Western blotting was used to detect the levels of proteins in the MAPK and NF-κB pathways. Inflammatory factors in the cell culture medium were measured by ELISA. NF-κB and MAPK pathway inhibitors and MUC5B siRNA (siMUC5B) were used to determine the function of MUC5B. Finally, N-acetyl-cysteine (NAC) was added and its regulatory effect on the MAPK-NF-κB-MUC5B pathway was examined in PQ-induced cell inflammation. Results. MUC5B was significantly upregulated accompanying the increases in TNF-α and IL-6 secretion following PQ treatment in mouse and also in A549 cells after treatment with 50 μM PQ at 24 hours. Furthermore, MAPK and NF-κB pathway inhibitors could dramatically decrease the expression of MUC5B and the secretion of TNF-α and IL-6. Importantly, siMUC5B could significantly attenuate the secretion of TNF-α and IL-6 induced by PQ. As expected, the addition of NAC efficiently suppresses the TNF-α and IL-6 secretion stimulated from PQ and also downregulated ERK, JNK, and p65 phosphorylation (ERK/JNK MAPK and NF-κB pathways) as well as MUC5B expression. Conclusion. Our findings suggest that MUC5B participates in the process of PQ-induced cell inflammation and is downstream of the NF-κB and MAPK pathways. NAC can attenuate PQ-induced cell inflammation at least in part by suppressing the MAPK-NF-κB-MUC5B pathway. These results nominate MUC5B as a new biomarker and therapeutic target for PQ-induced lung inflammation.

Funder

Jiangsu Province’s key provincial talents program

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3