1D CNN-Based Intracranial Aneurysms Detection in 3D TOF-MRA

Author:

Hou Wenguang1ORCID,Mei Shaojie1ORCID,Gui Qiuling1ORCID,Zou Yingcheng1ORCID,Wang Yifan1ORCID,Deng Xianbo2ORCID,Cheng Qimin3ORCID

Affiliation:

1. College of Life Science and Technology, Guangzhou, China

2. Department of Radiology, Union Hospital, Alberton, South Africa

3. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430022, China

Abstract

How to automatically detect intracranial aneurysms from Three-Dimension Time of Flight Magnetic Resonance Angiography (3D TOF MRA) images is a typical 3D image classification problem. Currently, the commonly used method is the Maximum Intensity Projection- (MIP-) based way. It transfers 3D classification into 2D case by projecting the 3D patch into 2D planes along different directions on the basis of voxel’s intensity. After then, the 2D Convolutional Neural Network (CNN) is established to do classification. It has been shown that the MIP-based method can reduce the demands for the samples and increase the computation efficiency. Meanwhile, the accuracy is comparable with that of 3D image classification. Inspired by the strategy of MIP, we want to further reduce the demands for samples and accelerate the training by transferring the 2D image classification into 1D case, i.e., we want to generate the 1D vectors from the MIP images and then establish a 1D CNN to do intracranial aneurysm detection and classification for 3D TOF MRA image. Specifically, our method first extracts a series of patches as the Region of Interests (ROIs) along the blood vessels from the original 3D TOF MRA 3D image. The corresponding MIP images of each ROI will be obtained through maximum intensity projecting. Then, we generate a series of 1D vectors by accumulating each MIP image along different directions. Meanwhile, a 1D CNN is established to detect aneurysms, in which, the input is the obtained 1D vectors and the output is the binary classification result denoting whether there are intracranial aneurysms in the considered patch. Generally, compared with 2D- and 3D-CNN, the 1D CNN-based way greatly accelerates the training and shows stronger robustness in the case of fewer samples. The efficiency of the proposed method outperforms the 2D CNN about 10 times in CPU training. Yet, their accuracies are close.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3