An Improved Blade Vibration Parameter Identification Method considering Tip Clearance Variation

Author:

Zhang Liang1ORCID,Wang Qidi1,Li Xin1

Affiliation:

1. Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China

Abstract

Blade tip timing (BTT) technology is the most effective means for real-time monitoring of blade vibration. Accurately extracting the time of blade tip reaching the sensors is the key to ensure the accuracy of the BTT system. The tip clearance changes due to various complex forces during high-speed rotation. The traditional BTT signal extraction method does not consider the influence of tip clearance change on timing accuracy and introduces large timing errors. To solve this problem, a quadratic curve fitting timing method was proposed. In addition, based on the measurement principle of the eddy current sensors, the relationship among the output voltage of the eddy current sensor, tip clearance, and the blade cutting magnetic line angle was calibrated. A multisensor vibration parameter identification algorithm based on arbitrary angular distribution was introduced. Finally, the experiments were conducted to prove the effectiveness of the proposed method. The results show that in the range of 0.4 to 1.05 mm tip clearance change, the maximum absolute error of the timing values calculated by the proposed method is 26.0359 us, which is much lower than the calculated error of 203.7459 us when using the traditional timing method. When the tip clearance changed, the constant speed synchronous vibration parameters of No. 0 blade were identified. The average value of the vibration amplitude is 1.0881 mm. Compared with the identification results without changing tip clearance, the average value error of the vibration amplitude is 0.0017 mm. It is proved that within the blade tip clearance variation of 0.4 to 0.9 mm, the timing values obtained by the proposed timing method can accurately identify the vibration parameters of the blade.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3