Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

Author:

Bellobono Ignazio Renato1,Rossi Mauro1,Testino Andrea2,Morazzoni Franca2,Bianchi Riccardo3,de Martini Giulia4,Tozzi Paola Maria4,Stanescu Rodica5,Costache Cristina5,Bobirica Liliana5,Bonardi Mauro Luigi6,Groppi Flavia6

Affiliation:

1. Environmental Research Centre, University of Milan, Camillo Golgi 19 Street, 20133 Milan, Italy

2. Department of Materials Science, University of Milano Bicocca, Cozzi 43 Street, 20126 Milan, Italy

3. ISTM, Institute of Molecular Sciences and Technologies, National Research Council (CNR), 20133 Milan, Italy

4. R&D Group, BIT srl, 20121 Milan, Italy

5. Department of Inorganic Technology and Environmental Protection, Polytechnic University of Bucharest, 011061 Bucharest, Romania

6. LASA, Department of Physics, University of Milan and National Institute of Nuclear Physics (INFN), 20133 Milan, Italy

Abstract

Photomineralization of methane in air (10.0–1000 ppm (mass/volume) of C) at100%relative humidity (dioxygen as oxygen donor) was systematically studied at318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC) disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 Wcm-1), the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3h1). Moreover, at a standard flow rate of 300 m3h1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters,k1andK1,k2andK2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance onk1andk2, as well as of flow rate onK1andK2, is rationalized. The influence of reactor geometry onkvalues is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or intermediates leading to mineralization, were considered, and it is paralleled by a second competition kinetics involving superoxide radical anion.

Funder

Fondazione Cariplo

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3