Sensor Fault Diagnosis of Locomotive Electro-Pneumatic Brake Using an Adaptive Unscented Kalman Filter

Author:

Gao Dianzhu12,Peng Jun2,Lu Yunyou1,Zhang Rui1,Yang Yingze2ORCID,Huang Zhiwu1

Affiliation:

1. School of Automation, Central South University, Changsha 410075, China

2. School of Computer Science and Engineering, Central South University, Changsha 410075, China

Abstract

Normal operation of the pressure sensor is important for the safe operation of the locomotive electro-pneumatic brake system. Sensor fault diagnosis technology facilitates detection of sensor health. However, the strong nonlinearity and variable process noise of the brake system make the sensor fault diagnosis become challenging. In this paper, an adaptive unscented Kalman filter- (UKF-) based fault diagnosis strategy is proposed, aimed at detecting bias faults and drift faults of the equalizing reservoir pressure sensor in the brake system. Firstly, an adaptive UKF based on the Sage-Husa method is applied to accurately estimate the pressure transients in the equalizing reservoir of the brake system. Then, the residual is generated between the estimated pressure by the UKF and the measured pressure by the sensor. Afterwards, the Sequential Probability Ratio Test is used to evaluate the residual so that the incipient and gradual sensor faults can be diagnosed. An experimental prototype platform for diagnosis of the equalizing reservoir pressure control system is constructed to validate the proposed method.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3