Comparison of the Applicability of Two Reanalysis Products in Estimating Tall Tower Wind Based on Multiple Linear Regression and Artificial Neural Network in South China

Author:

Li Xiangxiang1ORCID,Qin Xiaochen2ORCID,Yang Jun1ORCID,Xu Weiming1ORCID

Affiliation:

1. Meteorological Science Institute of Jiangxi Province, Nanchang, Jiangxi, China

2. Jiangxi Provincial Climate Center, Nanchang, Jiangxi, China

Abstract

Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.

Funder

Meteorological Science and Technology Project of Jiangxi Province

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3