Analysis of Potential Hub Genes for Neuropathic Pain Based on Differential Expression in Rat Models

Author:

Bai Jie12ORCID,Geng Bin23ORCID,Wang Xingwen23ORCID,Wang Shenghong23ORCID,Xia Yayi23ORCID

Affiliation:

1. Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China

2. Orthopedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China

3. Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China

Abstract

Objective. Neuropathic pain (NP) is a type of intractable chronic pain with complicated etiology. The exact molecular mechanism underlying NP remains unclear. In this study, we searched for molecular biomarkers of NP. Methods. Differentially expressed genes (DEGs) were predicted by analyzing three NP-related microarray datasets in Gene Expression Omnibus with robust rank aggregation. A weighted gene coexpression network analysis was conducted to construct a network of differentially expressed genes, followed by the evaluation of correlations between gene sets and the determination of hub genes. The candidate genes from the key module were identified using a gene set enrichment analysis. Results. In total, 353 upregulated and 383 downregulated genes were obtained, among which five hub genes were determined to be related to pain phenotypes. Reverse transcription-quantitative polymerase chain reaction was performed to verify the expression of these hub genes in the dorsal root ganglia of rats with spared nerve injury, which revealed the decreased expression of EMC4. Hence, EMC4 was defined as a biomarker for NP development. Conclusions. The results of this study form a basis for further research into the mechanism of NP development and are expected to aid in the development of novel therapeutic strategies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Anesthesiology and Pain Medicine,Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3