IPO5 Mediates EMT and Promotes Esophageal Cancer Development through the RAS-ERK Pathway

Author:

Li Meiyu1,Li Xiaofei1ORCID,Chen Shujia1,Zhang Tianai1,Song Liaoyuan1,Pei Jiayue1,Sun Guoyan1,Guo Lianyi1ORCID

Affiliation:

1. The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China

Abstract

Objective. In the development of many tumors, IPO5, as a member of the nuclear transporter family, exerts a significant function. Also, IPO5 is used as a therapeutic target for tumors based on some reports. By studying IPO5 expression in esophageal cancer tissues, the mechanism associated with IPO5 improving esophageal cancer development was explored in this study. Methods. To gain differentially expressed genes, this study utilized mRNA microarray and TCGA database for comprehensive analysis of esophageal cancer tissues and normal esophageal cancer tissues, and then the differentially expressed gene IPO5 was screened by us. To assess esophageal cancer patients’ prognosis, this study also applied the Kaplan-Meier analysis, and we also conducted the GSEA enrichment analysis to investigate IPO5-related signaling pathways. This study performed TISIDB and TIMER online analysis tools to study the correlation between IPO5 and immune regulation and infiltration. We took specimens of esophageal cancer from patients and detected the expression of IPO5 in tumor and normal tissues by immunohistochemistry. The IPO5 gene-silenced esophageal cancer cell model was constructed by lentivirus transfection. Through the Transwell invasion assay, CCK-8 assay, and cell scratch assay, this study investigated the effects of IPO5 on cell propagation, invasion, and transfer. What is more, we identified the influences of IPO5 on the cell cycle through flow cytometry and established a subcutaneous tumor-forming model in nude mice. Immunohistochemistry was used to verify the expression of KI-67, and this study detected the modifications of cell pathway-related proteins using Western blot and applied EMT-related proteins to explain the mechanism of esophageal cancer induced by IPO5. Results. According to database survival analysis, IPO5 high-expression patients had shorter disease-free survival than IPO5 low-expression patients. Compared to normal tissues, the IPO5 expression in cancer tissues was significantly higher in clinical trials ( P < 0.05 ). Through TISIDB and TIMER database studies, we found that IPO5 could affect immune regulation, and the age of IPO5 expression grows with the increase of immune infiltration level. The IPO5 expression in esophageal cancer cells was higher than normal, especially in ECA109 and OE33 cells ( P < 0.01 ). After knocking out IPO5 gene expression, cell proliferation capacity and invasion capacity were reduced ( P < 0.05 ) and decreased ( P < 0.01 ) in the IPO5-interfered group rather than the negative control group. The growth cycle of esophageal carcinoma cells was arrested in the G2/M phase after IPO5 gene silencing ( P < 0.01 ). Tumor-forming experiments in nude mice confirmed that after IPO5 deletion, the tumor shrank, the expression of KI67 decreased, the downstream protein expression level of the RAS pathway decreased after sh-IPO5 interference ( P < 0.01 ), and the level of EMT marker delined ( P < 0.05 ). Conclusion. In esophageal cancer, IPO5 is highly expressed and correlates with survival rate. Esophageal cancer cell growth and migration were significantly affected by the inhibition of IPO5 in vitro and in vivo. IPO5 mediates EMT using the RAS-ERK signaling pathway activation and promotes esophageal cancer cell development in vivo and in vitro.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3