Microchip Nd:YAG and Nd:YVO4 Lasers Pumped by VHG Wavelength-Stabilized Laser Diode

Author:

Saiki T.1ORCID,Tatebayashi A.1

Affiliation:

1. Kansai University, Department of Electrical, Electronic and Information Engineering, Faculty of Engineering Science, 3-3-35 Yamate-Cho, Suita, Osaka 564-8680, Japan

Abstract

We adopted a single-mode, single-wavelength volume holographic grating (VHG) wavelength-stabilized wavelength laser diode (LD) as a pumping LD for an end-pumped microchip Nd:YAG and Nd:YVO4 lasers we developed during CW and pulse operations. Higher optical-optical and slope efficiencies during CW operation have been obtained than when using a VHG LD experimentally. Output laser power is insensitive to the temperature of the LD when using a wavelength-stabilized LD and can remain stable and almost constant until the temperature of LD increases up to 40°C. The improved optical-optical conversion efficiency of 58% for the Nd:YVO4 laser has been obtained and calculated the output laser power during CW operation and compared it with the experimental results. We found that the output laser power of the Nd:YVO4 laser using the VHG wavelength-stabilized LD was more than twice as high as that using an LD without VHG. When the ambient temperature increases, the difference in output laser power should be large. In the future, a low-cost end-pumped microchip laser that does not require a temperature control should be developed.

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3