Affiliation:
1. College of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
2. School of Information Engineering and Art Design, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Abstract
Driving fatigue is one of the most important factors in traffic accidents. In this paper, we proposed an improved strategy and practical system to detect driving fatigue based on machine vision and Adaboost algorithm. Kinds of face and eye classifiers are well trained by Adaboost algorithm in advance. The proposed strategy firstly detects face efficiently by classifiers of front face and deflected face. Then, candidate region of eye is determined according to geometric distribution of facial organs. Finally, trained classifiers of open eyes and closed eyes are used to detect eyes in the candidate region quickly and accurately. The indexes which consist of PERCLOS and duration of closed-state are extracted in video frames real time. Moreover, the system is transplanted into smart device, that is, smartphone or tablet, due to its own camera and powerful calculation performance. Practical tests demonstrated that the proposed system can detect driver fatigue with real time and high accuracy. As the system has been planted into portable smart device, it could be widely used for driving fatigue detection in daily life.
Funder
Major International Cooperation Project of Zhejiang Province
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献