Caffeic Acid Dimethyl Ether Ameliorates Excessive Glucose and Lipid-Induced Insulin Secretion Dysfunction in Pancreatic Beta-Cells through the miR-378b–PI3K–AKT Pathway

Author:

Zhou Ermei1ORCID,Liang Yanqing1,Chen Qi1,Bi Jianghui1,Chen Junjie1,Li Yongwen12ORCID,Li Li2ORCID

Affiliation:

1. College of Pharmacy, Guilin Medical University, Guilin, China

2. Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China

Abstract

An important factor in the progression of type 2 diabetes mellitus is the malfunctioning insulin production by β-cells in the pancreas. Caffeic acid dimethyl ether (CADE) reduces resistance to insulin in alcoholic fatty liver disease, but both the therapeutic effects of CADE on excessive glucose and lipid-induced insulin secretion disorders and the underlying mechanisms are unknown. The aim of this research was to (i) explore how CADE impacts insulin production issues caused by a surplus of glucose and lipids β-cells and (ii) elucidate the underlying mechanism. The results of our research demonstrated that insulin production was reduced in the pancreas of mice given a high-fat -diet and streptozotocin, as well as in human 1.1B4 pancreatic β-cells treated with high -glucose and high -fat, with increased activity of miR-378b and decreased expression levels of p110α, p-AKT1/2, insulin receptor, p-FoxO1, and PDX-1. However, treatment with CADE ameliorated the insulin secretion impairment by decreasing the miR-378b level and reversing the inhibitory effects on the aforementioned factors. Overexpression of miR-378b exacerbated the insulin secretion disorder and inhibited the PI3K-AKT signaling pathway, whereas miR-378b deficiency relieved the insulin secretion disorder, activating the PI3K-AKT pathway. In addition, CADE ameliorated the impairment of insulin secretion and reversed the miR-378b overexpression-induced PI3K-AKT pathway inhibition. In conclusion, our study demonstrates that CADE ameliorated insulin secretion dysfunction induced by excess lipid and glucose in β-cells by downregulating miR-378b expression, thus promoting PI3K-AKT activation.

Funder

Guangxi Key Laboratory of Diabetic Systems Medicine

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3