Mechanical Degradation of Different Classes of Composite Resins Aged in Water, Air, and Oil

Author:

Ricci Weber Adad1,Alfano Priscila1,Pamato Saulo2ORCID,Cruz Carlos Alberto dos Santos3,Pereira Jefferson Ricardo2ORCID

Affiliation:

1. Department of Social Dentistry, Paulista State University, São Paulo, 04021-001, Brazil

2. Postgraduate Program of Health Sciences, University of Southern Santa Catarina, Tubarão, 88701-420, Brazil

3. Department of Dental Materials, Paulista State University, São Paulo, 04021-001, Brazil

Abstract

A significant deterioration of the properties can drastically compromise the survival rate of restorative materials. The aim of this study was to assess flexural strength and hardness of three composite classes: hybrid composite resin (HCR), nanoparticulate composite resin (NCR), and silorane-based composite resin (SBCR). One hundred specimens were prepared for hardness testing by using a split metallic mold measuring 10 mm in diameter and 2 mm deep. Twenty specimens were prepared for each restorative material, randomly assigned for storage in air, distilled water, or mineral oil. After intervals of 24 hours, 30, 60, 90, and 120 days, hardness and flexural strength tests were initially compared in two levels: “storage medium” and “time” within each material group. A two-way analysis of variance was performed (p<0.05) on the variables “material” and “storage time” (p<0.05). The HCR showed to be stable with regard to the evaluation of flexural strength and hardness (p<0.05). A significant reduction occurs for the NCR in comparison to the other groups (p<0.05). The NCR presented the lowest values of hardness and flexural strength kept on water over time. The characteristics of material showed a strong influence on the decrease of the mechanical properties analyzed.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3