The Impulsive Model with Pest Density and Its Change Rate Dependent Feedback Control

Author:

Khan Ihsan Ullah1,Tang Sanyi1ORCID

Affiliation:

1. School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China

Abstract

The idea of action threshold depends on the pest density and its change rate is more general and furthermore can produce new modelling techniques related to integrated pest management (IPM) as compared with those that appeared in earlier studies, which definitely bring challenges to analytical analysis and generate new ideas to the state control measures. Keeping this in mind, using the strategies of IPM, we develop a prey-predator system with action threshold depending on the pest density and its change rate, and study its dynamical behavior. We develop new criteria guaranteeing the existence, uniqueness, local and global stability of order-1 periodic solutions. Applying the properties of Lambert W function, the Poincaré map is portrayed for the exact phase set, which is helpful to provide the sufficient conditions for the existence and stability of the interior order-1 periodic solutions and boundary order-1 periodic solution, also confirmed by numerical simulations. It is studied in detail that how and under what conditions the fixed point of Poincaré map and its stability are affected by the newly introduced action threshold. The analytical methods developed in this paper will be very beneficial to study other generalized models with state-dependent feedback control.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3