Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosis

Author:

Liguori Gabriel Romero12ORCID,Zhou Qihui34,Liguori Tácia Tavares Aquinas12ORCID,Barros Guilherme Garcia12,Kühn Philipp Till3,Moreira Luiz Felipe Pinho2,van Rijn Patrick3ORCID,Harmsen Martin C.1ORCID

Affiliation:

1. University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands

2. Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil

3. University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV, Groningen, Netherlands

4. Institute for Translational Medicine, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266021, China

Abstract

Introduction. Progenitor cells cultured on biomaterials with optimal physical-topographical properties respond with alignment and differentiation. Stromal cells from connective tissue can adversely differentiate to profibrotic myofibroblasts or favorably to smooth muscle cells (SMC). We hypothesized that myogenic differentiation of adipose tissue-derived stromal cells (ASC) depends on gradient directional topographic features. Methods. Polydimethylsiloxane (PDMS) samples with nanometer and micrometer directional topography gradients (wavelength w=464-10, 990 nm; amplitude a=49-3, 425 nm) were fabricated. ASC were cultured on patterned PDMS and stimulated with TGF-β1 to induce myogenic differentiation. Cellular alignment and adhesion were assessed by immunofluorescence microscopy after 24 h. After seven days, myogenic differentiation was examined by immunofluorescence microscopy, gene expression, and immunoblotting. Results. Cell alignment occurred on topographies larger than w=1758nm/a=630nm. The number and total area of focal adhesions per cell were reduced on topographies from w=562nm/a=96nm to w=3919nm/a=1430nm. Focal adhesion alignment was increased on topographies larger than w=731nm/a=146nm. Less myogenic differentiation of ASC occurred on topographies smaller than w=784nm/a=209nm. Conclusion. ASC adherence, alignment, and differentiation are directed by topographical cues. Our evidence highlights a minimal topographic environment required to facilitate the development of aligned and differentiated cell layers from ASC. These data suggest that nanotopography may be a novel tool for inhibiting fibrosis.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3