A Machine-Learning Based Nonintrusive Smart Home Appliance Status Recognition

Author:

Matindife Liston1,Sun Yanxia1,Wang Zenghui2ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering Science, University of Johannesburg, Auckland Park 2006, South Africa

2. Department of Electrical and Mining Engineering, University of South Africa, Florida 1710, South Africa

Abstract

In a smart home, the nonintrusive load monitoring recognition scheme normally achieves high appliance recognition performance in the case where the appliance signals have widely varying power levels and signature characteristics. However, it becomes more difficult to recognize appliances with equal or very close power specifications, often with almost identical signature characteristics. In literature, complex methods based on transient event detection and multiple classifiers that operate on different hand crafted features of the signal have been proposed to tackle this issue. In this paper, we propose a deep learning approach that dispenses with the complex transient event detection and hand crafting of signal features to provide high performance recognition of close tolerance appliances. The appliance classification is premised on the deep multilayer perceptron having three appliance signal parameters as input to increase the number of trainable samples and hence accuracy. In the case where we have limited data, we implement a transfer learning-based appliance classification strategy. With the view of obtaining an appropriate high performing disaggregation deep learning network for the said problem, we explore individually three deep learning disaggregation algorithms based on the multiple parallel structure convolutional neural networks, the recurrent neural network with parallel dense layers for a shared input, and the hybrid convolutional recurrent neural network. We disaggregate a total of three signal parameters per appliance in each case. To evaluate the performance of the proposed method, some simulations and comparisons have been carried out, and the results show that the proposed method can achieve promising performance.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Smart Home Safety with Face Recognition using Machine Learning (ML);2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS);2023-10-27

2. Improving Smart Home Safety with Face Recognition using Machine Learning;2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS);2023-02-09

3. A Face Recognition Method In Machine Learning (ML) For Enhancing Security In Smart Home;2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2022-04-28

4. Global solar radiation time series forecasting using different architectures of the multilayer perceptron model;Journal of Physics: Conference Series;2022-01-01

5. Arc fault detection and appliances classification in AC home electrical networks using recurrence quantification plots and image analysis;Electric Power Systems Research;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3