Bisphenol A Removal through Low-Cost Kaolin-Based Ag@TiO2 Photocatalytic Hollow Fiber Membrane from the Liquid Media under Visible Light Irradiation

Author:

Shareef Usman12ORCID,Waqas Muhammad1ORCID

Affiliation:

1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China

2. Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Abstract

Removal of bisphenol A (BPA) from water has presented a major challenge for the water industry. In this work, we report the BPA separation properties of truly low-cost kaolin-based visible light-activated photocatalytic hollow fiber membranes. The ceramic hollow fiber support was successfully fabricated by phase inversion and sintering method, whereas Ag@TiO2 photocatalyst was prepared by liquid impregnation method. Different factors that affected the BPA removal were thoroughly investigated, including Ag loading in TiO2 catalyst and immersion time during dip coating method. A reference BPA (10 mgl-1) was used to check the photocatalytic performance of Ag@TiO2 photocatalysts and prepared membranes. Comprehensive characterization including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX/S), Brunner-Emmer-Teller (BET), and UV-Vis spectroscopy revealed altered morphological and physicochemical properties of the photocatalytic membrane. UV-Vis results exhibited that the extended absorption edge of Ag@TiO2 photocatalyst was observed into the visible region that led to its maximum BPA removal of 93.22% within 180 min under visible light irradiation. The FESEM images of the prepared membranes evinced a significant change in the structural morphologies, and UV-Vis showed the absorption edge in the visible region owing to the coating of the Ag@TiO2 photocatalyst on the surface of the membrane. The resultant membrane showed a significant photocatalytic performance in the degradation of BPA (90.51% within 180 min) in an aqueous solution under visible light irradiation. At inference, the prepared membrane can be considered a promising candidate for efficient removal of BPA.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3