Experimental Performance Evaluation of Multihop IEEE 802.15.4/4g/4e Smart Utility Networks in Outdoor Environment

Author:

Sum Chin-Sean1ORCID,Zhou Ming-Tuo1,Kojima Fumihide1,Harada Hiroshi1

Affiliation:

1. National Institute of Information and Communications Technology (NICT), Tokyo, Japan

Abstract

This paper presents the experimental performance evaluation results of the IEEE 802.15.4/4g/4e Smart Utility Networks (SUN) in applications suited for outdoor environment. SUN is an advanced wireless communications network designed for reliable, low data rate, and low energy consumption networks for command-and-control applications like utility service, sensor network, and so on. IEEE 802.15.4g/4e is the international standard for SUN supported by multiple utility providers and product vendors. In this paper, a comprehensive field test was conducted by employing the implementation we have developed to evaluate the performance of the SUN devices based on IEEE 802.15.4/4g/4e standard. The output power of the implementation is 250 mW for extended range, reducible to 20 mW for short-range scalability and battery preservation. Results showed that in an outdoor line-of-sight environment, the achievable one-hop range of a 50 kbps SUN device was 450 m. Next, in a non-line-of-sight environment involving typical residential concrete building, the communications could be established penetrating obstructions to reach above the 11th storey, reaching the performance degradation limits at the 20th storey. Next, the network of the SUN system was proven to be capable of supporting a typical multihop tree network in a dense populated building, meeting the required performance by the standard.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3