Structure-Mediated Excitation of Air Plasma and Silicon Plasma Expansion in Femtosecond Laser Pulses Ablation

Author:

Wang Qingsong1,Jiang Lan1,Sun Jingya1,Pan Changji1,Han Weina2,Wang Guoyan1,Wang Feifei1,Zhang Kaihu3,Li Ming4,Lu Yongfeng5

Affiliation:

1. Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Engineering Research Center of Applied Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China

3. Beijing Spacecrafts, China Academy of Space Technology, Beijing 100094, China

4. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

5. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA

Abstract

Femtosecond laser-induced surface structures upon multiple pulses irradiation are strongly correlated with the pulse number, which in turn significantly affects successive laser-material interactions. By recording the dynamics of femtosecond laser ablation of silicon using time-resolved shadowgraphy, here we present direct visualization of the excitation of air plasma induced by the reflected laser during the second pulse irradiation. The interaction of the air plasma and silicon plasma is found to enhance the shockwave expansion induced by silicon ablation in the longitudinal direction, showing anisotropic expansion dynamics in different directions. We further demonstrate the vanishing of air plasma as the pulse number increases because of the generation of a rough surface without light focusing ability. In the scenario, the interaction of air plasma and silicon plasma disappears; the expansion of the silicon plasma and shockwave restores its original characteristic that is dominated by the laser-material coupling. The results show that the excitation of air plasma and the laser-material coupling involved in laser-induced plasma and shockwave expansion are structure mediated and dependent on the pulse number, which is of fundamental importance for deep insight into the nature of laser-material interactions during multiple pulses ablation.

Funder

National Key R&D Program of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3