Error Compensation Trajectory Planning Method of Brake Disc Shaft Hole Assembly considering Robot Accumulated Error

Author:

Liu Wei1ORCID,Ma Yongheng1ORCID

Affiliation:

1. Yancheng Institute of Technology, School of Automotive Engineering, Yancheng 224051, Jiangsu, China

Abstract

Aiming at the problem of alignment deviation between shaft and hole caused by accumulated error in the assembly process of brake disc shaft hole, a trajectory planning method for compensating accumulated error is proposed. First, the path before the error is planned, and then the second compensation path is planned between the error position and the actual target point, so as to realize the accurate assembly of the brake disc. In this paper, the IRB 1410 robot is taken as the research object, and its kinematic model is established by using the improved D-H parameter method. The joint space quintic B-spline interpolation method was used to carry out trajectory planning, and the improved particle swarm optimization algorithm was introduced to solve the optimization. The optimal time and smooth trajectory were expected to be obtained. Then, using MATLAB software to simulate, compared with the nonoptimized trajectory, not only is the trajectory running time reduced from 8.6 s to 6.7 s but also the maximum joint change angle of each joint is reduced, which proves that the algorithm has optimization effect on trajectory running time and stability. Finally, the accuracy verification experiment of the algorithm is carried out, and the error between simulation and experiment is less than 6%, which shows the effectiveness of the method. This research provides a theoretical basis for improving the responsiveness and stability of brake disc assembly.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trajectory planning of tire laser engraving orthogonal robot based on an improved multi-objective grasshopper optimization algorithm;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3