Estimation of Sidelobe Level Variations of Phased Codes in Presence of Random Interference for Bistatic Wideband Noise Radar

Author:

Alejos Ana Vazquez1,Dawood Muhammad2,Mohammed Habeeb Ur-Rahman3

Affiliation:

1. The Signal Theory and Communication Department, University of Vigo, 36310 Vigo, Spain

2. The Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88001, USA

3. Texas Instruments Inc., Dallas, TX 75243, USA

Abstract

We discuss the importance of using the sidelobe level of the cross-correlation function as a criterion to implement a noise radar based on the transmission of wideband binary waveforms. Theoretical expressions are introduced for the parameters Peak-Sidelobe, Secondary-Sidelobe, and Integrated-Sidelobe levels for both Golay and pseudorandom binary sequences in presence of additive white Gaussian noise, relating the sequence lengthMto the spectral powerN0of the interfering noise. These expressions offer a valuable method for adaptive radar waveform design in order to determine sequence requirements which allow facing the noise present in the frequency band of interest. We also show a comparison of the ambiguity functions for Golay and PRBS sequences to analyze their performance in terms of Doppler and range accuracy. We describe a practical implementation of a pseudonoise waveform-based bistatic radar with reduced sidelobe level due to the use of Golay codes in combination with single side band modulation and operation at UHF band. Experimental measurements were performed in actual scenarios for ranging test of single and double targets. Linear polarizations were combined with different length sequences to determine their influence on the sounder performance under field test conditions.

Funder

New Mexico State University, and the Xunta de Galicia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3