CNOP-P-Based Parameter Sensitivity Analysis for North Atlantic Oscillation in Community Earth System Model Using Intelligence Algorithms

Author:

Mu Bin1,Li Jing1,Yuan Shijin1ORCID,Luo Xiaodan1,Dai Guokun2

Affiliation:

1. Department of Software Engineering, Tongji University, Shanghai, China

2. Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Abstract

Model error, which results from model parameters, can cause the nonnegligible uncertainty in the North Atlantic Oscillation (NAO) simulation. Conditional nonlinear optimal perturbation related to parameter (CNOP-P) is a powerful approach to investigate the range of uncertainty caused by model parameters under a specific constraint. In this paper, we adopt intelligence algorithms to implement the CNOP-P method and conduct the sensitivity analysis of parameter combinations for NAO events in the Community Earth System Model (CESM). Among 28 model parameters of the atmospheric component, the most sensitive parameter combination for the NAO + consists of parameter for deep convection (cldfrc_dp1), minimum relative humidity for low stable clouds (cldfrc_rhminl), and the total solar irradiance (solar_const). As for the NAO , the parameter set that can trigger the largest variation of the NAO index (NAOI) is comprised of the constant for evaporation of precip (cldwat_conke), characteristic adjustment time scale (hkconv_cmftau), and the total solar irradiance (solar_const). The most prominent uncertainties of the NAOI ( Δ NAOI ) caused by these two combinations achieve 2.12 for NAO + and −2.72 for NAO , respectively. In comparison, the maximum level of the NAOI variation resulting from single parameters reaches 1.45 for NAO + and −1.70 for NAO . It is indicated that the nonlinear impact of multiple parameters would be more intense than the single parameter. These results present factors that are closely related to NAO events and also provide the direction of optimizing model parameters. Moreover, the intelligence algorithms adopted in this work are proved to be adequate to explore the nonlinear interaction of parameters on the model simulation.

Funder

National Supercomputer Center in Guangzhou

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3