Effective and Reliable Malware Group Classification for a Massive Malware Environment

Author:

Lee Taejin1,Kwak Jin2ORCID

Affiliation:

1. Korea Internet and Security Agency, IT Venture Tower, 135 Chungdaero, Songpagu, Seoul 05717, Republic of Korea

2. Department of Cyber Security, College of Information Technology, Ajou University, 206 Worldcupro, Yengdongu, Sewon 16499, Republic of Korea

Abstract

Most of the cyber-attacks are caused by malware, and damage from them has escalated from cyber space to home appliances and infrastructure, thus affecting the daily living of the people. As such, anticipative analysis and countermeasures for malware have become more important. Most malware programs are created as variations of existing malware. This paper proposes a scheme for the detection and group classification of malware, some measures to improve the dependability of classification using the local clustering coefficient, and the technique for selecting and managing the leading malware for each group to classify them cost-effectively in a massive malware environment. This study also developed the system for the proposed model and compared its performance with the existing methods on actual malware to verify the level of dependability improvement. The technology developed in this study is expected to be used for the effective analysis of new malware, trend analysis of the same malware group, automatic identification of malware of interest, and same attacker trend analysis in addition to countermeasures for each malware program.

Funder

Ministry of Science, ICT and Future Planning

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3