A Water-Rock Coupled Model for Fault Water Inrush: A Case Study in Xiaochang Coal Mine, China

Author:

Wu Luyuan1ORCID,Bai Haibo1ORCID,Yuan Chao2,Wu Guangming1,Xu Changyu1,Du Yue1

Affiliation:

1. State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

2. Department of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China

Abstract

Water inrush disasters in mining frequently occur under the influence of confined water-bearing fault zones. Therefore, investigating the fault water inrush mechanism is necessary to reduce the number of occurrences of this type of disaster. In fault zones, the rock is highly fractured, and the mechanism of water conduction is complex. In this research, the seepage mechanism of fractured sandstone in fault zones is studied through experiments, and the results indicate that the permeability coefficient of fractured sandstone depends on the axial stress and particle size. The relationship between the permeability coefficient and axial stress was an exponential relationship. Then, a water-rock coupled model is proposed based on the experimental results, which considers the different water flow patterns during water inrush disasters. Finally, a numerical simulation combined with the water-rock coupled model is conducted to investigate the fault water inrush mechanism of a case study, and the results reveal that when water inrush disasters occur during mining, two types of conditions are required. One is that the connection among the fractured zone of the coal seam roof, fault fracture zone, and aquifer fails, and the other is that the connection among the fractured zone of the water inrush prevention pillar, fault fracture zone, and aquifer fails. This study contributes to an increased understanding of the mechanism of water inrush disasters and the design of water inrush prevention pillars.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3