Understanding the Polar Character Trend in a Series of Diels-Alder Reactions Using Molecular Quantum Similarity and Chemical Reactivity Descriptors

Author:

Morales-Bayuelo Alejandro12ORCID,Vivas-Reyes Ricardo2

Affiliation:

1. Departamento de Ciencias Químicas, Universidad Nacional Andres Bello, República 275, 8370146 Santiago, Chile

2. Grupo de Química Cuántica y Teórica, Programa de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia

Abstract

In molecular similarity there is a premise “similar molecules tend to behave similarly”; however in the actual quantum similarity field there is no clear methodology to describe the similarity in chemical reactivity, and with this end an analysis of charge-transfer (CT) processes in a series of Diels-Alder (DA) reactions between cyclopentadiene (Cp) and cyano substitutions on ethylene has been studied. The CT analysis is performed in the reagent assuming a grand canonical ensemble and the considerations for an electrophilic system using B3LYP/6-31G(d) and M06-2X/6-311 + G(d,p) methods. An analysis for CT was performed in agreement with the experimental results with a good statistical correlation (R2=0.9118) relating the polar character to the bond force constants in DA reactions. The quantum distortion analysis on the transition states (TS) was performed using molecular quantum similarity indexes of overlap and coulomb showing good correlation (R2=0.8330) between the rate constants and quantum similarity indexes. In this sense, an electronic reorganization based on molecular polarization in terms of CT is proposed; therefore, new interpretations on the electronic systematization of the DA reactions are presented, taking into account that today such electronic systematization is an open problem in organic physical chemistry. Additionally, one way to quantify the similarity in chemical reactivity was shown, taking into account the dependence of the molecular alignment on properties when their position changes; in this sense a possible way to quantify the similarity of the CT in systematic form on these DA cycloadditions was shown.

Funder

Universidad Nacional Andres Bello

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3