Affiliation:
1. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
2. Dalian Scientific Test and Control Technology Institute, Dalian 116013, China
3. Science and Technology on Underwater Test and Control Laboratory, Dalian 116013, China
Abstract
Ship wakes are large, exist for a long time, and are difficult to disguise or conceal. These characteristics can be used as an important basis for ship tracking and recognition. However, distinguishing between wakes, underwater targets, and sea surface is a difficult problem that currently limits acoustic wake homing technology. To solve this problem, in this study, from the viewpoint of feature recognition, the effects of bubble radius, air volume fraction, frequency, depth, and other parameters on the group bubble were first investigated. The volume scattering intensity of acoustic wakes at different frequencies and depths was also calculated and analyzed, and the results of our theoretical calculations were verified through an experiment using a multifrequency single wave sonar dock. Subsequently, through the single frequency and multibeam sonar sea trial test, a statistical model of target characteristics with a clear physical mechanism was developed. The developed model can be utilized for the guidance and recognition of acoustic wake targets. Thus, this study lays the foundation for the practical application of acoustic wake guidance.
Funder
National Key Basic Research Development Program
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献