Analytical Comparison of Two Emotion Classification Models Based on Convolutional Neural Networks

Author:

Jiang Huiping1ORCID,Wu Demeng1,Jiao Rui1ORCID,Wang Zongnan1

Affiliation:

1. Brain Cognitive Computing Lab, School of Information and Engineering, Minzu University of China, Beijing 100081, China

Abstract

Electroencephalography (EEG) is the measurement of neuronal activity in different areas of the brain through the use of electrodes. As EEG signal technology has matured over the years, it has been applied in various methods to EEG emotion recognition, most significantly including the use of convolutional neural network (CNN). However, these methods are still not ideal, and shortcomings have been found in the results of some models of EEG feature extraction and classification. In this study, two CNN models were selected for the extraction and classification of preprocessed data, namely, common spatial patterns- (CSP-) CNN and wavelet transform- (WT-) CNN. Using the CSP-CNN, we first used the common space model to reduce dimensionality and then applied the CNN directly to extract and classify the features of the EEG; while, with the WT-CNN model, we used the wavelet transform to extract EEG features, thereafter applying the CNN for classification. The EEG classification results of these two classification models were subsequently analyzed and compared, with the average classification accuracy of the CSP-CNN model found to be 80.56%, and the average classification accuracy of the WT-CNN model measured to 86.90%. Thus, the findings of this study show that the average classification accuracy of the WT-CNN model was 6.34% higher than that of the CSP-CNN.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference25 articles.

1. Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network

2. P300 brainwave extraction from EEG signals: An unsupervised approach

3. Fast fourier analysis and EEG classification brainwave controlled wheelchair;S. SimKok

4. A novel convolutional neural networks for emotion recognition based on EEG signal;Z. Wen

5. Emotion Recognition based on EEG using LSTM Recurrent Neural Network

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3