Bayesian Network-Based Knowledge Graph Inference for Highway Transportation Safety Risks

Author:

Wenhui Luo1ORCID,Fengtian Cai1,Chuna Wu1,Xingkai Meng1

Affiliation:

1. Research Institute of Highway Ministry of Transport, Beijing 100088, China

Abstract

Accurate inference of knowledge about highway transportation safety risks forms a crucial aspect of building a knowledge graph. Based on the data related to highway transportation accidents, this study has developed a Bayesian network model. The initial identification of the network nodes is through expert scoring. The network structure is then constructed by utilizing the prior expert knowledge and K2 greedy search algorithm. Later, the network parameters are trained via the expectation-maximization (EM) algorithm. Finally, knowledge about highway transportation safety risks is inferred using the junction tree algorithm. A comparison is made between the trained conditional and actual probabilities during the network parameter training to verify the validity of the proposed model that accords with expert experience, thereby proving the model validity. Further, its main “causal chain” is inferred to be an improper emergency response-human failure-accident occurrence, where the probability of driver failure is 82%, and the probability of accident occurrence is 68% by taking “a certain road traffic accident” as an example. There is consistency between the inference results and the actual accident sequence that suggests the effectiveness of the proposed knowledge inference method.

Funder

Science and Technology Innovation of Research Institute of Highway Ministry of Transport

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference19 articles.

1. Knowledge graph for TCM health preservation: Design, construction, and applications

2. Shaping graph pattern mining for financial risk

3. Method for information system risk management based on Markov logic networks;Y. Chen;Computer Engineering and Applications,2016

4. A Markov logic network based sentence sentimental analysis method;L. G. Yang;Transactions of Beijing Institute of Technology,2013

5. Ensemble method to joint inference for knowledge extraction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3