Study on an Intelligent Prediction Method of Ticket Price in a Subway System with Public-Private Partnership

Author:

Wang Shengmin12ORCID,Fang Jun1ORCID,Liu Lanjun1ORCID,Wu Han1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

2. School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China

Abstract

The accurate and rapid prediction of ticket prices for a public-private partnership (PPP) subway system, which is an important research topic in the field of civil engineering management, is of critical importance to ensure its smooth operation. To effectively cope with the effects of multiple influencing factors and strong nonlinearity among them, the mean impact value (MIV) method and the back-propagation (BP) feed-forward neural network improved by the sparrow search algorithm (SSA) are used in this study to develop an intelligent prediction model. First, we considered the relationship of the supply and the subway system service, which is a typical quasi-public product, and analyzed the relevant factors affecting its price adjustment. Then, we developed an intelligent method for the prediction of ticket prices based on the SSA-BP. This model not only makes full use of the powerful nonlinear modeling ability of the BP algorithm, but also takes advantage of the strong optimization ability and fast convergence speed of the SSA. Finally, this study screened out the key input factors by adopting the MIV method to simplify the structure of the BP algorithm and achieve a high prediction accuracy. In this study, Beijing Subway Line 4, Wuhan Metro Line 2, and Chengdu Metro Line 1 were selected as case study sites. The results showed that the linear correlations between influencing factors and ticket price for the PPP subway system service were weak, which indicated the need for using nonlinear analysis methods such as the BP algorithm. Compared with other prediction methods (the price adjustment method based on PPP contract, the traditional BP algorithm, the BP neural network improved by the genetic algorithm, the BP algorithm improved by the particle swarm optimization, and the support vector machine), the model proposed in this paper showed better prediction accuracy and calculation stability.

Funder

Science and Technology Project of Wuhan Urban and Rural Construction Bureau

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3