Effect of Turbine Weight on the Seismic Response of a Wind Turbine-Monopile System Located in Liquefied Multilayer Soil

Author:

Tirandazian Mehran1ORCID,Nouri Gholamreza1ORCID

Affiliation:

1. Faculty of Engineering, Kharazmi University, Tehran, Iran

Abstract

The core objectives of sustainable development are to develop access to renewable, sustainable, reliable, and cost-effective resources. Wind is an essential source of renewable energy, and monopile wind turbines are one method proposed for harnessing wind power. Offshore wind turbines can be vulnerable to earthquakes and liquefaction. This numerical study defined the effects of wind turbine weight on the seismic response of a wind turbine-monopile system located in liquefied multilayered soil with layer thicknesses of 5, 10, 15, and 20 m using four far-field records. OpenSees PL analysis indicated that if the liquefied sand had a lower density or a thickness of more than 10 m, then an increase in the earthquake acceleration beyond 0.4 g caused the pile to float like liquefied soil and to lose its vertical bearing capacity. Moreover, increasing the wind turbine power from 2 to 5 kW had no significant effect on the soil-structure interaction response. As the earthquake acceleration increased, the bending moment of the pile-column also increased as long as liquefaction did not occur and the pile-column deformation remained rotational-spatial in shape. As the acceleration and liquefaction increased and the pile began to float in response to its transverse motion, there was no significant difference in the pile-column displacement along the length, but there was a decrease in the pile-column bending moments. As this phenomenon increased and the pile continued to float, transformation of the pile increased the difference between the displacement of the pile-column along its length and further increased the bending moments. These results were derived from multiple correlation analysis, the bending moment relations, and lateral displacement of the pile-column of the wind turbine.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3