Affiliation:
1. School of Mathematics, Shandong University, China
Abstract
The main purpose of this paper is to solve the nonlinear Schrödinger equation using some suitable analytical and numerical methods such as Sumudu transform, Adomian Decomposition Method (ADM), and Padé approximation technique. In many literatures, we can see the Sumudu Adomian decomposition method (SADM) and the Laplace Adomian decomposition method (LADM); the SADM and LADM provide similar results. The SADM and LADM methods have been applied to solve nonlinear PDE, but the solution has small convergence radius for some PDE. We perform the SADM solution by using the function
called double Padé approximation. We will provide the graphical numerical simulations in 3D surface solutions of each application and the absolute error to illustrate the efficiency of the method. In our methods, the nonlinear terms are computed using Adomian polynomials, and the Padé approximation will be used to control the convergence of the series solutions. The suggested technique is successfully applied to nonlinear Schrödinger equations and proved to be highly accurate compared to the Sumudu Adomian decomposition method.
Funder
China Scholarship Council
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献