Two-Agent Single Machine Order Acceptance Scheduling Problem to Maximize Net Revenue

Author:

Li Jiaji1ORCID,Gajpal Yuvraj1ORCID,Bhardwaj Amit Kumar2ORCID,Chen Huangen3ORCID,Liu Yuanyuan4ORCID

Affiliation:

1. Department of Supply Chain Management, I.H. Asper School of Business, University of Manitoba, Winnipeg, MB R3T 5V4, Canada

2. L.M Thapar School of Management, Thapar Institute of Engineering & Technology, Dera Bassi Campus, Patiala, Punjab, India

3. School of Business Administration, Southwestern University of Finance and Economics, Chengdu, China

4. School of International Business, Southwestern University of Finance and Economics, Chengdu, China

Abstract

The paper considers two-agent order acceptance scheduling problems with different scheduling criteria. Two agents have a set of jobs to be processed by a single machine. The processing time and due date of each job are known in advance. In the order accepting scheduling problem, jobs are allowed to be rejected. The objective of the problem is to maximize the net revenue while keeping the weighted number of tardy jobs for the second agent within a predetermined value. A mixed-integer linear programming (MILP) formulation is provided to obtain the optimal solution. The problem is considered as an NP-hard problem. Therefore, MILP can be used to solve small problem instances optimally. To solve the problem instances with realistic size, heuristic and metaheuristic algorithms have been proposed. A heuristic method is used to determine and secure a quick solution while the metaheuristic based on particle swarm optimization (PSO) is designed to obtain the near-optimal solution. A numerical experiment is piloted and conducted on the benchmark instances that could be obtained from the literature. The performances of the proposed algorithms are tested through numerical experiments. The proposed PSO can obtain the solution within 0.1% of the optimal solution for problem instances up to 60 jobs. The performance of the proposed PSO is found to be significantly better than the performance of the heuristic.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3