Effect of Prophylactic Vaccination with the Membrane-Bound Acid Phosphatase Gene of Leishmania mexicana in the Murine Model of Localized Cutaneous Leishmaniasis

Author:

Burgos-Reyes María Angélica1,Baylón-Pacheco Lidia1,Espíritu-Gordillo Patricia1,Galindo-Gómez Silvia1,Tsutsumi Víctor1,Rosales-Encina José Luis1ORCID

Affiliation:

1. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico

Abstract

Leishmaniasis is a disease caused by an intracellular protozoan parasite of the genus Leishmania. Current treatments for leishmaniasis are long, toxic, and expensive and are not available in some endemic regions. Attempts to develop an effective vaccine are feasible, but no vaccine is in active clinical use. In this study, the LmxMBA gene of Leishmania mexicana was selected as a possible vaccine candidate using the reverse vaccinology approach, and the prophylactic effect generated by DNA vaccination with this gene in a murine model of cutaneous leishmaniasis was evaluated. The results showed that prophylactic vaccination with pVAX1::LmxMBA significantly reduced the size of the lesion and the parasitic load on the footpad, compared to the control groups. At a histological level, a smaller number of parasites were evident in the dermis, as well as the absence of connective tissue damage. Mice immunized with plasmid pVAX1::LmxMBA induced immunity characterized by an increase in the IgG 2 a / IgG 1 > 1 ratio and a higher rate of lymphocyte proliferation. In this study, immunization with the plasmid promoted an improvement in the macroscopic and microscopic clinical manifestations of the experimental infection by L. mexicana, with a T helper 1 response characterized by an IgG 2 a / IgG 1 > 1 ratio and high lymphoproliferative response. These findings support immunization with the plasmid pVAX1::LmxMBA as a preventive strategy against cutaneous infection of L. mexicana.

Funder

Fondo SEP-Cinvestav

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3