Electrochemical Sensor Based on Nanodiamonds and Manioc Starch for Detection of Tetracycline

Author:

Fernandes-Junior Wilson Silva1,Zaccarin Leticia Fernanda1,Oliveira Geiser Gabriel2,de Oliveira Paulo Roberto1,Kalinke Cristiane3,Bonacin Juliano Alves3,Prakash Jai4ORCID,Janegitz Bruno Campos1ORCID

Affiliation:

1. Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil

2. Federal University of Tocantins, 77402-970 Gurupi, TO, Brazil

3. Institute of Chemistry, University of Campinas, 13083-859 Campinas, SP, Brazil

4. Department of Chemistry, National Institute of Technology Hamirpur, 177005, India

Abstract

The use of nanostructured materials is already well-known as a powerful tool in the development of electrochemical sensors. Among several immobilization strategies of nanomaterials in the development of electrochemical sensors, the use of low-cost and environmentally friendly polymeric materials is highlighted. In this context, a new nanostructured biocomposite electrode is proposed as an electrochemical sensor for the analysis and determination of tetracycline. The composite electrode consists of a modified glassy carbon electrode (GCE) with a nanodiamond-based (ND) and manioc starch biofilm (MS), called ND-MS/GCE. The proposed sensor showed better electrochemical performance in the presence of tetracycline in comparison to the unmodified electrode, which was attributed to the increase in the electroactive surface area due to the presence of nanodiamonds. A linear dynamic range from 5.0 × 10 6 to 1.8 × 10 4  mol L−1 and a limit of detection of 2.0 × 10 6  mol L−1 were obtained for the proposed sensor. ND-MS/GCE exhibited high repeatability and reproducibility for successive measurements with a relative standard deviation (RSD) of 6.3% and 1.5%, respectively. The proposed electrode was successfully applied for the detection of tetracycline in different kinds of water samples, presenting recoveries ranging from 86 to 112%.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3