Affiliation:
1. Institute of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2. Institute of Design and Art, Beijing Institute of Technology, Beijing 100086, China
Abstract
To overcome the shortcomings that the early fault characteristics of rolling bearing are not easy to be extracted and the identification accuracy is not high enough, a novel collaborative diagnosis method is presented combined with VMD and LSSVM for incipient faults of rolling bearing. First, the basic concept of VMD was introduced in detail, and then, the adaptive selection principle of parameter K in VMD was constructed by instantaneous frequency mean. Furthermore, we used Lagrangian polynomial and Euclidean norm to verify the value of K accurately. Secondly, we proposed a classification algorithm based on PSO-optimized LSSVM. Meanwhile, the flowchart of the classification algorithm of fault modes may be also designed. Third, the experiment shows that the presented algorithm in this paper is effective by using the existing failure data provided by the laboratory of Guangdong Petrochemical Research Institute. Finally, some conclusions and application prospects were discussed.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献