Investigation on Methods of Determining the Grouting Quality of Embedded Rock Bolts Using High Frequency Guided Waves

Author:

Li Peng1,Zhang Changsuo1ORCID,Yang Guanlin1

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

Abstract

Two experiments, with differing equipment setups, were used to test rock bolts, with differing structures and grouting qualities, using low frequency (20–200 kHz) and high frequency (700 kHz-3 MHz) guided waves to determine the effect of grouting quality on the propagating velocity of the guided waves. The results indicate that grouting quality has a significant effect on the velocity at which waves of low frequencies propagate through embedded rock bolts. As guided wave frequency increases, the sensitivity of the propagating velocity of guided waves to grouting quality decreases. Furthermore, the influence of grouting quality on propagating velocity becomes negligible once the frequency of the guided wave is greater than or equal to 1.0 MHz. An investigation was conducted to ascertain the feasibility of utilizing high frequency guided waves to determine the grouting quality of embedded rock bolts. Moreover, this study discusses a method of evaluating the grouting quality of embedded rock bolts using the peak ratios and average amplitude ratios of the high frequency guided waves. Through an analysis of the results of the abovementioned method, it was discovered that the optimal guided wave frequency is 2.65 MHz for the evaluation of 20 mm fully-embedded rock bolts because waves with this frequency have the largest average amplitude ratios.

Funder

Beijing Institute of Technology

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference21 articles.

1. Non-destructive testing of rock bolts using guided ultrasonic waves;M. D. Bread;International Journal of Rock Mechanics and Mining Sciences,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasonic testing in the field of engineering joining;The International Journal of Advanced Manufacturing Technology;2024-04-25

2. Investigation on the dynamic characteristics of anchor rods considering size effect and pull-out loads based on IIR-FDM;Measurement Science and Technology;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3