Development of a Mobile Application Platform for Self-Management of Obesity Using Artificial Intelligence Techniques

Author:

Sefa-Yeboah Sylvester M.1ORCID,Osei Annor Kwabena1ORCID,Koomson Valencia J.2,Saalia Firibu K.3,Steiner-Asiedu Matilda3,Mills Godfrey A.1ORCID

Affiliation:

1. Department of Computer Engineering, University of Ghana, P.O. Box LG, 77 Legon, Ghana

2. Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA

3. Department of Nutrition and Food Science, University of Ghana, P.O. Box LG134, Legon, Ghana

Abstract

Obesity is a major global health challenge and a risk factor for the leading causes of death, including heart disease, stroke, diabetes, and several types of cancer. Attempts to manage and regulate obesity have led to the implementation of various dietary regulatory initiatives to provide information on the calorie contents of meals. Although knowledge of the calorie content is useful for meal planning, it is not sufficient as other factors, including health status (diabetes, hypertension, etc.) and level of physical activity, are essential in the decision process for obesity management. In this work, we present an artificial intelligence- (AI-) based application that is driven by a genetic algorithm (GA) as a potential tool for tracking a user’s energy balance and predicting possible calorie intake required to meet daily calorie needs for obesity management. The algorithm takes the users’ input information on desired foods which are selected from a database and extracted records of users on cholesterol level, diabetes status, and level of physical activity, to predict possible meals required to meet the users need. The micro- and macronutrients of food content are used for the computation and prediction of the potential foods required to meet the daily calorie needs. The functionality and performance of the model were tested using a sample of 30 volunteers from the University of Ghana. Results revealed that the model was able to predict both glycemic and non-glycemic foods based on the condition of the user as well as the macro- and micronutrients requirements. Moreover, the system is able to adequately track the progress of the user’s weight loss over time, daily nutritional needs, daily calorie intake, and predictions of meals that must be taken to avoid compromising their health. The proposed system can serve as a useful resource for individuals, dieticians, and other health management personnel for managing obesity, patients, and for training students in fields of dietetics and consumer science.

Publisher

Hindawi Limited

Subject

Health Information Management,Computer Networks and Communications,Health Informatics,Medicine (miscellaneous)

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3