Energy Efficiency Optimization of Massive MIMO Systems Based on the Particle Swarm Optimization Algorithm

Author:

Yang Jing1ORCID,Zhang Liping1,Zhu Chunhua1,Guo Xinying1,Zhang Jiankang2ORCID

Affiliation:

1. College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

2. Department of Computing & Informatics, Bournemouth University, Poole BH12 5BB, UK

Abstract

As one of the key technologies in the fifth generation of mobile communications, massive multi-input multioutput (MIMO) can improve system throughput and transmission reliability. However, if all antennas are used to transmit data, the same number of radiofrequency chains is required, which not only increases the cost of system but also reduces the energy efficiency (EE). To solve these problems, in this paper, we propose an EE optimization based on the particle swarm optimization (PSO) algorithm. First, we consider the base station (BS) antennas and terminal users and analyze their impact on EE in the uplink and downlink of a single-cell multiuser massive MIMO system. Second, a dynamic power consumption model is used under zero-forcing processing, and it obtains the expression of EE that is used as the fitness function of the PSO algorithm under perfect and imperfect channel state information (CSI) in single-cell scenarios and imperfect CSI in multicell scenarios. Finally, the optimal EE value is obtained by updating the global optimal positions of the particles. The simulation results show that compared with the traditional iterative algorithm and artificial bee colony algorithm, the proposed algorithm not only possesses the lowest complexity but also obtains the highest optimal value of EE under the single-cell perfect CSI scenario. In the single-cell and multicell scenarios with imperfect CSI, the proposed algorithm is capable of obtaining the same or slightly lower optimal EE value than that of the traditional iterative algorithm, but the running time is at most only 1/12 of that imposed by the iterative algorithm.

Funder

Henan University of Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3