Diversity and Regularity of Periodic Impact Motions of a Mechanical Vibration System with Multiple Rigid Stops

Author:

Yin Fengwei12ORCID,Luo Guanwei12,Wang Xueming3

Affiliation:

1. School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of System Dynamics and Reliability of Rail Transport Equipment of Gansu Province, Lanzhou 730070, China

3. Jilin Railway Technology College, Jilin 230002, China

Abstract

The mechanical model of a two-degree-of-freedom vibration system with multiple rigid stops was established, and the effects of the multiple rigid stops to dynamic characteristics of two mass blocks of the system were studied. The judgment conditions and differential equations of motion of the system masses impacting rigid stops were analyzed. Based on the multiparameter and multiobjective collaborative simulation analysis, the correlation between the dynamic characteristics of the vibration system and the model parameters is studied. The basic periodic and subharmonic impact motions are analyzed with emphasis on the influences of dynamical parameters on the mode diversity and the distribution characteristics, and the law of emergence and competition of various periodic impact motions on the parametric plane is revealed. The singular points, the hysteresis transition domains, and the accompanying codimension-two bifurcations, caused by the irreversibility of the transition between adjacent basic periodic impact motions in the low-frequency domain, are analyzed. The reasonable parameter matching range, associated with dynamic characteristic optimization of the system, is determined.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3